Intra-/Inter-user Adaptation Framework for Wearable Gesture Sensing Device
Abstract
The photo reflective sensor (PRS), a tiny distant-measurement module, is a popular electronic component widely used in wearable user-interfaces. An unavoidable issue of such wearable PRS devices in practical use is the need of userindependent training to have high gesture recognition accuracy. Each new user has to re-train a device by providing new training data (we call the inter-user setup). Even worse, re-training is also necessary ideally every time when the same user re-wears the device (we call the intra-user setup). In this paper, we propose a domain adaptation framework to reduce this training cost of users. Specifically, we adapt a pre-trained convolutional neural network (CNN) for both inter-user and intra-user setups to maintain the recognition accuracy high. We demonstrate, with an actual PRS device, that our framework significantly improves the average classification accuracy of the intra-uer and inter-user setups up to 87.43% and 80.06% against the baseline (non-adapted) setups with the accuracy 68.96% and 63.26% respectively.
反射型光センサを利用したウェアラブルデバイスが数多く開発されています.こういったデバイスにおいてユーザのジェスチャを識別するためには利用するユーザごとに学習する必要があります.また,同じユーザであっても再装着した場合にも再度学習する必要があります.本研究ではドメイン適応を導入することによりユーザの学習コストを低減する手法を提案します.事前にトレーニングをおこなった畳み込みニューラルネットワーク(CNN)に対して少量の再学習データを利用してトレーニングすることで高い識別率を維持することができます.
Members
Kosuke Kikui,
Yuta Itoh (Tokyo Institute of Technology / Riken AIP),
Makoto Yamada (Kyoto University / Riken AIP),
Yuta Sugiura,
Maki Sugimoto
Publication
Kosuke Kikui, Yuta Itoh, Makoto Yamada, Yuta Sugiura, and Maki Sugimoto. 2018. Intra-/inter-user adaptation framework for wearable gesture sensing device. In Proceedings of the 2018 ACM International Symposium on Wearable Computers (ISWC ’18). ACM, New York, NY, USA, 21-24. DOI: https://doi.org/10.1145/3267242.3267256